- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Katzfuss, Matthias (3)
-
Zilber, Daniel (3)
-
Berrocal, Veronica (1)
-
Brynjarsdóttir, Jenný (1)
-
Gong, Wenlong (1)
-
Guinness, Joseph (1)
-
Hobbs, Jonathan (1)
-
Mondal, Anirban (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hobbs, Jonathan; Katzfuss, Matthias; Zilber, Daniel; Brynjarsdóttir, Jenný; Mondal, Anirban; Berrocal, Veronica (, Remote Sensing)Modern remote-sensing retrievals often invoke a Bayesian approach to infer atmospheric properties from observed radiances. In this approach, plausible mean states and variability for the quantities of interest are encoded in a prior distribution. Recent developments have devised prior assumptions for the correlation among atmospheric constituents and across observing locations. This work formulates a spatial statistical framework for simultaneous multi-footprint retrievals of carbon dioxide (CO2) with application to the Orbiting Carbon Observatory-2/3 (OCO-2/3). Formally, the retrieval state vector is extended to include atmospheric and surface conditions at many footprints in a small region, and a prior distribution that assumes spatial correlation across these locations is assumed. This spatial prior allows the length-scale, or range, of spatial correlation to vary between different elements of the state vector. Various single- and multi-footprint retrievals are compared in a simulation study. A spatial prior that also includes relatively large prior variances for CO2 results in posterior inferences that most accurately represent the true state and that reduce the correlation in retrieval error across locations.more » « less
-
Katzfuss, Matthias; Guinness, Joseph; Gong, Wenlong; Zilber, Daniel (, Journal of Agricultural, Biological and Environmental Statistics)null (Ed.)
An official website of the United States government
